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Because electrostatic forces are crucial in biological systems, molecular dynamics simulations of biological
systems require a method of computing electrostatic forces that is accurate and rapid. We propose a surface
charge method, apply it to a system of arbitrary number of charged dielectric spheres, and obtain an exact
solution for an arbitrary configuration of the spheres. The precision depends only on the number of terms kept
in a series expansion and can therefore be controlled at will. It appears that the first few terms are usually
adequate. The exact result exhibits a phenomenon that we call asymmetric screening. Namely, the magnitude
of attractive interactions is decreased �relative to point charges in an infinite solvent� while the magnitude of
repulsive interactions is increased �again, relative to point charges in an infinite solvent�. This effect might aid
in the adoption of correct conformations and in intermolecular recognition. Evaluation of the energy involves
only matrix inversion. The surface charge method can be transformed easily to a numerical method for use with
arbitrary surfaces. With modest additions, the model also describes an electrorheological fluid. Such a system
provides the cleanest opportunity to apply the model.

DOI: 10.1103/PhysRevE.73.061902 PACS number�s�: 87.15.Aa, 83.80.Hj, 83.80.Gv, 41.20.Cv

I. MOTIVATION AND CURRENT METHODS

Electrostatic interactions in biological systems are both
important and difficult to calculate accurately in practice.
Many biological molecules bear considerable electric charge.
For example, DNA typically bears a linear charge density of
�−6e /nm. Several of the amino acids that form proteins
form ions in solution. The solvent itself—namely, water—
produces considerable electrostatic effects. Water has a high
dielectric constant ���73 at 40 °C� �1� compared to, for
example, proteins ���3–5� �2� and therefore creates consid-
erable induced charge densities during screening. On top of
all this, numerous ions of various physical sizes and with
various electric charges inhabit the solvent and are function-
ally important, as attested to by the existence of the various
ion channels ��3� is one of many articles on ion channels�.
Furthermore, hydrogen bonds, known to be involved in helix
formation in both DNA and proteins, are essentially electro-
static in origin. Indeed, it seems that electrostatic effects of-
ten drive the physical-chemical processes in biological sys-
tems and, thereby, determine biological function. Therefore,
any attempt to perform molecular dynamics �MD� simula-
tions of biological systems will require an adequate descrip-
tion of these electrostatic forces.

In order to focus the discussion, consider a protein in
water. Considerable interest exists in predicting and under-
standing the physical basis of the protein’s interactions with
other molecules and its conformation, as well as the path in
conformation space that the protein follows on its way to its
native conformation. At first glance, computing the electro-
static interactions described above on the classical level
might seem to be a simple matter. After all, Maxwell’s equa-

tions are known. In practice, however, the task is not so
simple, a fact attested to by the rather large body of litera-
ture, including several fairly comprehensive review articles
�2,4–6�, that has been developed over the years, often under
the term “solvation.”

Because the electrostatic energy needs to be calculated at
each step of a MD simulation, MD requires a method that, in
addition to being accurate, is computationally fast. There is
often a trade-off between these two basic requirements. The
methods used to deal with solvation in MD simulations can
be divided into explicit and implicit solvent methods. The
eplicit solvent methods, as the name indicates, include water
molecules �and perhaps ions� in the MD simulation in much
the same way as the other molecules are included, although
separate effort is often made to parametrize the representa-
tion of the solvent. In some cases, treating the solvent mol-
ecules on an equal footing with the solute molecule�s� might
even seem to be necessary, as, for example, when a small
number of solvent molecules are intimately contained within
the structure of a larger solute. In such cases, a number of
solvent molecules are part and parcel of the solute. The ad-
vantage of using explicit solvent is that, to the extent that the
force field and its parametrization are valid, the results
should reflect reality. However, there are at least two disad-
vantages to this approach. First, considerable computational
effort is expended on molecules of little intrinsic interest.
Second, decisions regarding the amoung of water to include,
the boundary conditions, and the parametrization of the wa-
ter will often partially undermine the advantage of explicit
solvent. Often, the solvent can be conceptually distinguished
from the solute, and in such cases it is generally the solute
that is of primary interest, the solvent being of interest only
insofar as it has an effect on the solute. In such cases, it is
desirable, if possible, to use methods that treat the solvent in
an average way. Such methods are called implicit or con-
tinuum solvent methods. One possibility is to attempt to av-
erage over the atomic polarizations to obtain a position-
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dependent dielectric function �7�. Sometimes referred to as
Lorentz-Debye-Sack �LDS� theory, this approach in practice
generally produces a distance-dependent �i.e., spherically
symmetric� screening function. At times, LDS theory has
been combined with aspects of the Born model discussed
below �7,8�. Another more frequently used possibility is to
regard the dielectric constants of the solvent and solute as
parameters of the model. The continuum solvent methods in
common use in MD simulations can be divided into two
main groups: methods that solve the Poisson equation �or the
Poisson-Boltzmann �PB� equation if ions in the solvent are
taken into account� and methods that use some version of the
generalized Born �GB� model.

The PB methods have the virtue of being straightforward
in principle, since the strategy is just to solve the PB equa-
tion numermically. Many different schemes have been de-
vised to accomplish this �9�. PB methods are intermediate in
computational time with respect to explicit solvent methods
and GB methods. Furthermore, because PB methods yield a
numerical electrostatic potential, forces have to be computed
as numerical gradients.

GB methods are extentions of one kind or another of
Born’s model of solvation of an ion �10�. In the Born model,
an ion in solution is regarded as a spherical cavity of radius
a in an infinite dielectric medium �dielectric constant �o�
with a point charge q at the center of the cavity. The exact
heat of hydration is 1

2 � 1
�0

−1� q2

a . The motivation for the GB
approach arises from the observation that the difference in
energy between a collection of such ions �charges qi� with
large pairwise separations rij in an infinite dielectric medium
�dielectric constant �0� and a similar collection in vacuum is
1
2 � 1

�0
−1��i�j

qiqj

rij
. Given the similarity of the two expressions,

it is perhaps natural to inquire whether one can find a for-
mula of this general form that has these limits. The most
commonly used expression is that of Still et al. �11�:

�rij
2 + �i� jexp	−

rij
2

4�i� j

�1/2

,

where �i is the Born radius of atom i. Although the Born
radii are just free parameters in the context of the justifica-
tion given above for the GB model, a somewhat more formal
justification can be given for the values given the Born radii.
The derivation involves the Coulomb field approximation
�CFA�. For the original Born model of a single ion in an
infinite solvent, the electric displacement of the point charge
is the same as if there were no solvent at all. This is true
because of the spherical symmetry of the situation. Without
the symmetry there is no reason to expect the same result for
the displacement. The CFA consists of using this same elec-
tric displacement for each point charge in the joint cavity of
all the atoms with all the other point charges set to zero.
Most of the numerous variations on the simple GB model
involve different methods of approximating �to increase
speed� or empirically adjusting �to increase accuracy� the
Born radii. In the original GB formulation of Still et al. �11�,
the Born radii were expressed as an integral over the solute
volume and were computed by numerical integration on a
grid. These Born radii depended on the configuration of the

solute, but for the purpose of computing derivatives to obtain
the force, Still et al. ignored this dependence. Schaefer and
Froemmel �12� obtained Born radii by computing integrals
of the fields with various nonsystematic approximations. In
generalized born/analytical continuum electrostatics �GB/
ACE�, Schaefer and Karplus �13� represented the molecular
volume as a superposition of Gaussian functions. Lee, Salis-
bury, and Brooks �14� represented the molecular volume
�which needs to be integrated over in the typical formulas
used to generate the Born radii� as a superposition of quartic
exponential functions within a switching function and added
an empirical correction term to the CFA. Ghosh, Rapp, and
Friesner �15� replaced the integrals over the molecular vol-
ume with integrals over the molecular surface; this is the
surface GB method and should be more efficient. It is worth
noting the basic approximations common to most of the GB
variations: first, the GB equation itself is a convenient guess
as to the form of the energy; second, the CFA is usually used
when obtaining the Born radii. The specific schemes have
various other additional approximations, some of them noted
above.

Two major avenues are being pursued to improve the GB
model. The first type of proposed improvement involves
moving beyond a point-charge model of the charge distribu-
tion of the solute molecule, obviously an approximation of
the actual electronic charge density. The point charge model
potentially does not have enough flexibility to adequately
reflect the behavior of the system. The methods proposed to
address this issue include the addition of off-center charges
and the use of multipole expansions to represent the solute
charge distribution. Another type of proposed improvement
addresses the fact that the solute molecule itself, not just the
dielectric medium, is polarizable. Many methods do not re-
flect this degree of freedom. The methods proposed to ad-
dress this issue include allowing the charge to fluctuate, in-
clusion of Drude oscillators, and the inclusion of point
polarizabilities �usually dipoles�. Several other issues de-
serve additional attention. Due to the complications they
present, ions are not consistently included. Also, the force is
needed in MD calculations, and if the potential is what is in
hand, a derivative is required. It would be nice to avoid or
mitigate the process of numerical differentiation. Finally, the
choice of surface is, in general, problematic.

II. MODIFIED APPROACH

Suppose one wishes to consider a biomolecule in solution
�generally water�. It is standard, and appropriate for classical
considerations, to model a molecule as a collection of
�possibly overlapping� spheres. If, as is often the case, one
wishes to proceed at an atomic level, the spheres represent
individual atoms. Coarse-grained methods can be imple-
mented by associating a sphere with a larger chemical group
�e.g., an amino acid� and choosing parameters accordingly.
We shall focus on the atomistic model, although most of our
remarks are applicable to the coarse-grained models, as well.
Associated with each sphere is an electric charge. In prin-
ciple, one can also assign higher-order multipole moments
�with respect to some coordinate system�. Rarely are mo-
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ments higher than the dipole assigned. Each sphere repre-
sents a polarizable �dielectric� medium and, in the presence
of external fields such as the fields due to other similar
spheres, can produce higher-order multipole moments. The
full electric field is then the sum of the fields due to all the
spheres including the original monopole moments and the
fields due to polarization. It is quite possible to treat the
water molecules in much the same manner as was just de-
scribed for the solute molecule. However, as mentioned
above, this explicit solvent method is computationally labo-
rious with much labor being spent on water molecules that
are not of primary interest. It is tempting to replace the ex-
plicit solvent with a continuous dielectric medium every-
where outside the molecule of interest.

The equation that must be solved to find the electric field
�or potential� is either Poisson’s equation or the Poisson-
Boltzmann equation �nonlinear or a linear approximation�
depending on whether one is including the effects of ions in
the solvent. These differential equations give rise to bound-
ary value problems. The boundaries are at infinity �if a large
“containter” is assumed, otherwise a boundary at the con-
tainer� and at the interface between the spheres and solvent
�water�. The first instinct when confronted with such a
boundary value problem is, if the boundary lacks symmetry
or is otherwose sufficiently complex, to solve the differential
equation numerically on some appropriate grid. �The usual
analytical methods—e.g., separation of variables—are sur-
prisingly involved even for the relatively simple situation of
just two dielectric spheres in an infinite medium.� Because
the differential equations are second order, there will be two
boundary conditions. It should also be noted that such algo-
rithms are implemented on a three-dimensional grid and will
therefore generally scale with the volume of the system.

We take a fresh approach. For the time being we will
consider Poisson’s equation, although the extention to in-
clude ions is underway. We model a molecule as a collection
of nonoverlapping linear dielectric spheres representing at-
oms. There is then an interfacial surface between the mol-
ecule �collection of spheres� and the solvent. Because the
system is a piecewise-constant linear dielectric, the polariza-
tion produces induced charge only at the boundary. This
well-known fact is a key point, since it points the way to
transforming a three-dimensional problem to a two-
dimensional problem. The main distinctive feature of our
method is the use of the induced surface charge density as
the function to be solved for. This strategy has been aluded to
earlier �16� and presented in simpler geometries �17�. Other
surface methods are difficult to adapt for MD �18,19�. The
surface charge strategy is here applied to a system of a large
number of spheres; the numerical extension for a general
surface is outlined. Given the decision to regard the induced
surface charge density on each sphere as the function to be
solved for, it is reasonable to expand the induced surface
charge density in spherical harmonics. The solution therefore
comprises the set of coefficients in these expansions: �lm

i , the
l ,m component of the surface charge density of the sphere i.
Once the potential has been written in terms of the surface
charge density, there is only one boundary condition: conti-
nuity of the dielectric constant times the normal derivative of
the potential at the surface. The potential is automatically

continuous at the boundary because it has been expressed
directly in terms of the surface charge density there. Once
the potential V has been expressed in coordinates suitable for
enforcing the boundary condition, one obtains an infinite set
of linear algebraic equations for the components of the sur-
face charge density. A solution �possibly approximate� of this
set of equations will then allow substitution of these compo-
nents back into the original expression for the potential.

An advantage of this method is that it transforms a three-
dimensional problem into a two-dimensional problem. The
benefit of this change is clear for cases in which a numerical
solution is necessary. In fact, somewhat similar two-
dimensional methods focusing on the surface charge density
�sometimes called apparent surface charge �ASC� methods�
have been developed �4�, but are not in widespread use in
MD simulations. They are ocassionally used for one-time
calculations of the electric potential of fixed solute molecules
�20�. Another advantage of the surface charge method is that
the original differential equation has been replaced by a set
of linear algebraic equations. In other words, straighforward
matrix inversion is the main numerical tool required. The
solution presented for a system of spheres is also applicable
to a colloidal system �21,22�.

III. THE MODEL

Consider N dielectric spheres, A1 , . . . ,AN, immersed in
an infinite medium of dielectric constant �0. The ith dielectric
sphere Ai has radius ai, has a point charge qi at its center,
and consists of a material with dielectric constant �i. The
induced surface charge density on sphere Ai is �i. When
considering the contribution to the potential near the surface
of Ak due to the surface charge on Ai, it is convenient to use
the following local coordinate system �as opposed to the glo-
bal laboratory coordinate system�. The origin is chosen to be
at the center of Ak, and the negative z axis is chosen to pass
through the center of Ai. The distance between the centers of
Ai and Ak is Lik= �Ri−Rk�, and the unit vector pointing from
the center of Ak to the center of Ai is nik= �Ri−Rk� /Lik.
�Often, when there is no chance of confusion, the subscripts
will be dropped from symbols such as Lik and nik.� The ro-
tation of the laboratory z axis to the local z axis is shown in
Fig. 1. The two angles � and � suffice because there is no
preferred orientation for the local x and y axes. The angles �
and �, of course, differ for each local coordinate system.1

The vector from the center of Al to an arbitrary point P is rl.
The vector from the center of Al to an arbitrary point P on
the surface of the sphere Al is rl�. The angle between rl and

the local positive z axis is �̃l; the azimuthal angle of rl with
respect to the local coordinate system is �̃l. The angle be-

tween rl� and the local positive z axis is �̃l�; the azimuthal

1In the degenerate case that the global and local z axes are paral-
lel, the global and local coordinate systems are chosen to be iden-
tical �i.e., �=� and �=��. In the other degenerate case that the
global and local z axes are antiparallel, the new coordinate system is
reached by rotating counterclockwise around the global y axis by �
�i.e., �=0 and �=��.
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angle of rl� is �̃l�. The vector to an arbitrary point from the
origin is r �no subscript� and has the usual polar coordinates
r, �, and �. The vector to an arbitrary source point �i.e., an
arbitrary point on the surface of one of the spheres� from the
origin is r� �no subscript� and has the usual polar coordinates
r�, ��, and ��. The pattern of the notation is that a vector or
angle without a prime refers to the location of a general
point, a vector or an angle with a prime refers to the location
of a source point, an angle without a tilde is with respect to
the laboratory coordinate system, and an angle with a tilde is
with respect to the local coordinate system. The vector to the
center of Al from the origin is Rl and has the usual polar
coordinates Rl, 	l, and 
l.

The ultimate objective is to find the total electrostatic en-
ergy of such a system of N dielectric spheres embedded in an
unbounded dielectric medium. To that end, one wishes to
calculate for an arbitrary point in space the electrical poten-
tial, which is a linear superposition of the potentials of the
screened point charges qi /�i �i=1, . . . ,N� and the surface
charge densities �i �i=1, . . . ,N�:

V�r� = �
i=1

N
qi

�i�r − Ri�
+ �

i=1

N 
Ai

�i�r��
�r − r��

dSi�. �1�

As mentioned in the preceding section, the induced surface
charge densities are not known; rather, they are obtained by
enforcing the boundary condition at the surface of each
sphere. Application of the boundary condition requires that
the total potential of the known point charges and the still
unspecified surface charge densities be calculated just inside
and just outside the surface of each sphere. The boundary
conditions will yield algebraic equations which, when
solved, give the induced surface charge densities in terms of
known quantities. As mentioned above, once the surface
charge densities are know, the potential is obtained simply by
feeding the expression for the surface charge density back
into Eq. �1�, the original general expression for the electro-
static potential.

Clearly, the model only generates the electrostatic inter-
actions in a biomolecular system. In order to apply the model

in such a context, the result will have to be integrated into a
program �MD, for example� that computes the behavior of
such a system. However, with modest additions the model
also describes an electrorheological fluid. Such a system will
offer the cleanest opportunity to apply the model. This appli-
cation will be presented in a subsequent publication.

IV. TWO SPHERES: AN IMPORTANT SUBSYSTEM

As explained in the preceding section, the central task is
to apply the boundary condition at the surface of each
sphere. Since each boundary is spherical, it is obviously de-
sirable, for the purpose of applying the boundary condition,
to express the potential near each spherical surface in terms
of spherical polar coordinates centered on that sphere. For
example, consider the potential near the surface Ak. The con-
tributions from the point charges and from the induced sur-
face charge on Ak are relatively straightforward to calculate
in these coordinates. However, the contribution to the poten-
tial near Ak from the induced surface charge on another
sphere Ai requires a little work to obtain. This contribution
will now be calculated.

The potential due to the �as yet undetermined� induced
surface charge on sphere Ai is

Vi�r� = 
Ai

�i�r��
�r − r��

dSi�. �2�

Since our interest lies in the potential due to �i near some
other sphere Ak, we note the geometrically evident expres-
sions �see Fig. 2� involving r and r�: r=Rk+rk and r�=Rk
+Ln+ri�. These expressions lead to r−r�=rk− �Ln+ri��,
which, with the observation that rk� �Ln+ri�� when rk→ak,
permits the denominator of Eq. �2� to be expanded:

�r − r��−1 = �rk − �Ln + ri���
−1 = �

l�=0

�

rk
l��Ln + ri��

−l�−1Pl��cos � ,

where  is the angle between rk and Ln+ri�. Furthermore,

Pl��cos � =
4�

2l� + 1 �
m�=−l�

l�

Yl�m���̃k,�̃k�Yl�m�
* ��̂�,�̂�� ,

where �̂� and �̂� are the spherical polar angles of the vector
Ln+ri� with respect to the local coordinate system with ori-
gin at the center of Ak. The surface charge density can also
be expanded in spherical harmonics:

�i�r�� = �
l=0

�

�
m=−l

l

�4��lm
i Ylm��i�,�i��

= �
l=0

�

�
m=−l

l

�4��̃lm
i Ylm��̃i�,�̃i�� . �3�

This expansion can be made with to respect to any set of
coordinate axes one may care to choose. In the present in-
stance, it is most convenient to use the expansion with re-
spect to the local coordinate system �the second expansion in
Eq. �3�� in order to carry out the integration in Eq. �2�. How-

FIG. 1. �a� The rotation that takes the local z axis to the global
z axis. A rotation �labeled 1� about the global z axis through an
angle �−� is followed by a rotation �labeled 2� about the global y
axis through an angle �−�. In the text, this rotation is denoted by
R. �b� The rotation that takes the global z axis to the local z axis. A
rotation �labeled 1� about the global y axis through an angle �−� is
followed by a rotation �labeled 2� about the global z axis through an
angle �−�. In the text, this rotation is denoted by R−1. The notation
for the rotation angles has been chosen for later convenience.
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ever, it will ultimately be necessary to transform back to
global coordinates in order to apply the boundary condition.
The two expansions are, of course, not independent; the con-
nection between �lm

i and �̃lm
i is presented in the Appendix.

Upon using the expansions for the numerator and the de-
nominator in Eq. �2�, the potential becomes

Vi�rk� = �
lml�m�

�4�Q̃lm
i

2l� + 1
Yl�m���̃k,�̃k�rk

l�

� d�cos �̃i��d�̃i�
Ylm��̃i�,�̃i��Yl�m�

* ��̂�,�̂��

�Ln + ri��
l�+1

, �4�

where Q̃lm
i =4�ai

2�̃lm
i . �Since Q̃lm

i depends on which of the

many local coordinate systems the surface charge is being

represented in, Q̃lm
i is actually a simplified notation for

Q̃lm
i �k�.�
In order to carry out the angular integrations in Eq. �4�,

�̂�, �̂�, and �Ln+ri�� must be expressed in terms of the inte-

gration variables �̃i� and �̃i�. The law of cosines gives �Ln
+ri� � =L�1+ tik

2 −2tikcos �̃i��
1/2 where tik�ai /Lik �for brevity,

tik will be shortened to ti when this will not cause confusion�.
For the azimuthal angle one may choose �̂�= �̃i�. Finally,

geometrical considerations �see Fig. 2� give �Ln+ri� �cos �̂�

=aicos �̃i�−L which leads to

cos ��̂ =
ti cos �̃i� − 1

�1 + ti
2 − 2ti cos �̃i��

1/2
.

Now Eq. �4� becomes

Vi�rk� = �
lml�

�4�Q̃lm
i rk

l�

2�2l� + 1�Ll�+1
Yl�m��̃k,�̃k�

���2l + 1��l − m� ! �2l� + 1��l� − m�!
�l + m� ! �l� + m�!

� 
−1

1
Plm�x�Pl�m	 tix − 1

�1 + ti
2 − 2tix



�1 + ti

2 − 2tix��l�+1�/2
dx ,

where x=cos �̃i�. The integral has been motivated and evalu-
ated by Yu �16�:


−1

1
Plm�x�Pl�m	 tx − 1

�1 + t2 − 2tx



�1 + t2 − 2tx��l�+1�/2
dx

=
2tl�− 1�l�−m�l + l��!

�2l + 1��l − m� ! �l� − m�!
.

The potential becomes

Vi�rk� = �
lml�

�4�Q̃lm
i ti

l�− 1�l�−m�l + l��!

Ll�+1��2l + 1��2l� + 1��l + m� ! �l� + m� ! �l − m� ! �l� − m�!
rk

l�Yl�m��̃k,�̃k� . �5�

Finally, in anticipation of enforcing the boundary condition in the global coordinate system, we make �based upon the analysis
in the Appendix� the following substitutions:

FIG. 2. The geometry of the two-sphere subsystem �spheres Ak

and Ai� with some of the useful variables indicated: rk is a vector
from the center of Ak to an arbitrary point, ri� is a vector from the
center of Ai to a source on the surface of Ai, Ln is a vector from the

center of Ak to the center of Ai, �̃i� is the polar angle of ri� in the

local coordinate system, �̃k is the polar angle of rk in the local

coordinate system, �̂ik� is the polar angle of Ln+ri� in the local
coordinate system, z is a unit vector parallel to the global z axis, and
z̃ is a unit vector parallel to the local z axis. Two other vectors,
derived from the others and prominent in the analysis, are also
shown.
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Yl�m��̃k,�̃k� = ��̃k,�̃k�l�,m� = ��,��D†�R��l�,m� = �
m�

Dm�m
�l�� �R−1�Yl�m���k,�k� ,

Q̃lm
i = �

m�

Dmm�
�l� �R�Qlm�

i .

The rotation R, which is actually Ri→k with suppressed indices, takes the local z axis, which points from the center of sphere
i to the center of sphere k, to the global z axis. Along with a relabeling of summation indices �l↔ l� and m↔m��, these
substitutions transform Eq. �5� into

Vi�rk� = �
lmm�m�l�

�4�Dm�m�
�l�� �R�Ql�m�

i ti
l��− 1�l−m��l + l��!

Ll+1��2l + 1��2l� + 1��l + m�� ! �l� + m�� ! �l − m�� ! �l� − m��!
rk

l Dmm�
�l� �R−1�Ylm��k,�k� . �6�

V. MANY SPHERES

The previous section was devoted to obtaining an expres-
sion for the potential near Ak due to the surface charge on Ai
�i�k� written in terms of spherical coordinates centered on
Ak, with an eye toward enforcing the boundary condition at
Ak. The others terms in Eq. �1� for the electrostatic potential
will now be obtained.

First, consider the potential near Ak due to the surface
charge on Ak itself:

Vk�rk� = 
Ak

�k�rk��
�rk − rk��

dSk�.

The numerator may be expanded as before, except that it is
not necessary to switch to a rotated coordinate system:

�k�rk�� = �
l=0

�

�
m=−l

l

�4��lm
k Ylm��k�,�k�� .

The expansion of the denominator is

�rk − rk��
−1 = �

l=0

�

�
m=−l

l
4�

2l + 1
r�

l r�
−l−1Ylm

* ��k�,�k��Ylm��k,�k� ,

where r�=min�rk ,ak� and r�=max�rk ,ak�. One finds

Vk�rk� = �
lm

�4�Qlm
k r�

l

�2l + 1�r�
l+1Ylm��k,�k� , �7�

with Qlm
k =4�ak

2�lm
k .

Second, consider the potential of qi near Ak �i�k�. The
dielectric medium in which qi is placed causes the charge to
be screened to qi /�i. Therefore, because rk�L, the potential
is

qi

�i�rk − Ln�
=

qi

�i
�
l=0

�
rk

l

Ll+1

4�

2l + 1 �
m=−l

l

Ylm��k,�k�Ylm
* ��,�� .

�8�

The angles � and � are the polar angles of Ln in the global
reference frame �see Figs. 1 and 2�.

Finally, the potential of qk near Ak is just

qk

�krk

�4�Y00��k,�k� . �9�

The full potential in the vicinity of Ak is then found by
substitution of Eqs. �6�–�9� into Eq. �1�. With the full poten-
tial written in convenient coordinates, one can now enforce
the boundary condition at Ak for each k:

�k� �Vin

�rk
�

ak

= �0� �Vex

�rk
�

ak

.

For the case l=m=0, the boundary condition reduces to a
previously known fact �17� about the total surface charge on
Ak:

Q00
k = Qk = qk	 1

�0
−

1

�k

 . �10�

For all other terms �l�0�, one finds

��kl + �0�l + 1���4�

�2l + 1�
Qlm

k = ��0 − �k���i�k

qiltki
l+14�

�i�2l + 1�
Ylm

* ��ik,�ik�

+ �
l�,m�,m�

i�k

�4�Dm�m�
�l�� �Ri→k�Ql�m�

i tik
l��− 1�l−m��l + l�� ! ltki

l+1Dmm�
�l� �Ri→k

−1 �

��2l + 1��2l� + 1��l − m�� ! �l� − m�� ! �l + m�� ! �l� + m�� ! �1/2� , �11�
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which, in principle, is to be solved for the Qlm
i for all i, l

�0, and −l�m� l. For clarity, the dependence of tki
=ak /Lik on its second index has been restored; the indices of
the angles �ik and �ik have also been restored, as have the
indices of Ri→k.

VI. ELECTROSTATIC ENERGY

The electrostatic energy U can be obtained from the po-
tential

U = �
i=1

N
1

2
qi��

j�i

qj

� j�Ri − R j�
+ �

j=1

N

Vj�r = Ri��
= �

i=1

N

�
j�i

� qiqj

2� jLij
+

1

2
qiVj�ri = 0�� + �

i=1

N
1

2
qiVi�ri = 0� .

�12�

In each case, the potentials are evaluated at the location of
the charge qi. The final term in Eq. �12� involves Eq. �7� with
ri=0. But ri=0 implies that r�=0 and r�=ai, so only the
single term with l=m=0 survives in Eq. �7�. Using Eq. �10�,
one finds, for the final term in Eq. �12�,

�
i=1

N
qi

2

2ai
	 1

�0
−

1

�i

 .

Now consider the first part of Eq. �12�. This term involves
the potential

Vj�ri = 0� = �
l=0

�
Q̃l0

j �i�tji
l

Lij
�2l + 1

=
Q̃00

j

Lij
+ �

l=1

�
Q̃l0

j �i�tji
l

Lij
�2l + 1

=
Q00

j

Lij
+ �

l=1

�
Q̃l0

j �i�tji
l

Lij
�2l + 1

,

where the i dependence of Q̃l0
j �i� due to the coordinate

change has been made explicit. With this expression, the first
term in Eq. �12� becomes

�
i=1

N

�
j�i

qiqj

2�0Lij
+ �

i=1

N

�
j�i

�
l=1

�
qiQ̃l0

j �i�tji
l

2Lij
�2l + 1

.

One has, for the energy,

U = �
i=1

N
qi

2

2ai
	 1

�0
−

1

�i

 + �

i=1

N

�
j�i

qiqj

2�0Lij
+ �

i=1

N

�
j�i

�
l=1

�
qiQ̃l0

j �i�tji
l

2Lij
�2l + 1

.

�13�

The first term is the so-called Born self-energy and repre-
sents the energy difference upon transferring each of the
charged dielectric spheres from vacuum to the medium of
dielectric constant �0. The second sum is the lowest order of
interaction between each two spheres. In particular, as two
spheres are separated by ever larger distances, the energy
becomes simply the Coulomb interaction of the two point
charges embedded in the medium of dielectric constant �0.
The final multiple sum represents the corrections to the pre-
vious two contributions. Notice that each element of the sum
is proportional to one of the point charges and to one of the
spherical harmonic components of the induced surface
charge density on one of the other spheres.

VII. SPECIAL CASE: TWO ISOLATED SPHERES

Because some of the existing approximate methods for
dealing with the electrostatic interactions under consider-
ation treat each pairwise interaction as occuring in isolation,
it is useful to examine the special case of two isolated
spheres.

A. Simplification of the linear system of equations

Specifying the spheres with the subscripts �or super-
scripts� a and b, we use the following notation for this spe-
cial case: aa→a, ab→b, Lab→L. Furthermore, without loss
of generality, Ra=0 and Rb=Lẑ. The result of Eq. �10� for the
case of two isolated spheres is

Q00
a = Qa = qa	 1

�0
−

1

�a

 ,

Q00
b = Qb = qb	 1

�0
−

1

�b

 . �14�

The values of Qlm
a and Qlm

b for l�0 are determined by Eq.
�11� with only the two spheres a and b:

��bl + �0�l + 1���4�

�2l + 1�b2 Qlm
b

= ��0 − �b�� qa

�a

lbl−1

Ll+1

4�

2l + 1
Ylm

* ��,�� + �
l�,m�,m�

�4�Dm�m�
�l�� �I�Ql�m�

a ta
l��− 1�l−m��l + l�� ! lbl−1Dmm�

�l� �I�

Ll+1��2l + 1��2l� + 1��l − m�� ! �l� − m�� ! �l + m�� ! �l� + m�� ! �1/2� ,
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��al + �0�l + 1���4�

�2l + 1�a2 Qlm
a = ��0 − �a�� qb

�b

lal−1

Ll+1

4�

2l + 1
Ylm

* �0,��

+ �
l�,m�,m�

�4�Dm�m�
�l�� �I��Ql�m�

b tb
l��− 1�l−m��l + l�� ! lal−1Dmm�

�l� �I��

Ll+1��2l + 1��2l� + 1��l − m�� ! �l� − m�� ! �l + m�� ! �l� + m�� ! �1/2� . �15�

Note that Ylm
* �� ,��=m0Pl�−1��2l+1

4� =m0�−1�l�2l+1
4� and Ylm

* �0,��=m0Pl�1��2l+1
4� =m0

�2l+1
4� . The identity rotation is denoted

by I, and the rotation that reverses the direction of the z axis is denoted by I�. The relevant rotation matrix elements are
Dm�m

l �I�=m�m and Dm�m
l �I��=m,−m��−1�l+m. On symmetry grounds we expect a nontrivial result for Ql0

a and Ql0
b , but only the

trivial solution Qlm
a =Qlm

b =0 for m�0. Notice that different values of m decouple. For each value of m, all values of l� �m� for
the same m couple.

First, we shall check that only the trivial solution exists for Eq. �15� in the case that m�0. In this case, the first term on the
right-hand side of each equation in Eq. �15� vanishes and the equations become linear homogeneous algebraic equations, albeit
an infinite set of such equations:

Qlm
b = �

l�=�m�

�
�1 − xb��2l + 1�ta

l��− 1�l−m�l + l�� ! ltb
l+1

��xb + 1�l + 1���2l + 1��2l� + 1��l − m� ! �l� − m� ! �l + m� ! �l� + m�!
Ql�m

a � �
l�=�m�

�

Bll�Ql�m
a ,

Qlm
a = �

l�=�m�

�
�1 − xa��2l + 1�tb

l��− 1�l�+m�l + l�� ! lta
l+1

��xb + 1�l + 1���2l + 1��2l� + 1��l − m� ! �l� − m� ! �l + m� ! �l� + m�!
Ql�m

b � �
l�=�m�

�

All�Ql�m
b ,

where A and B are matrices defined by these equations, and we have defined xa=�a /�0 and xb=�b /�0. If follows that Qa

=AQb=A�BQa�=ABQa, which can only be true either if Qa=Qb=0 �i.e., the trivial solution� or if AB=BA= I. If it can be
demonstrated that AB� I, then only the trivial solution exists. A representative matrix element of BA is

�BA�ll� =
�1 − xa��1 − xb��2l + 1��− 1�l+l�ltb

l+l�+1ta

��xb + 1�l + 1���2l + 1��2l� + 1��l − m� ! �l + m� ! �l� + m� ! �l� − m�!

� �
l�=�m�

�
�ta

2�l�l��l + l�� ! �l� + l��!
��xa + 1�l� + 1��l� − m� ! �l� + m�!

=
�1 − xa��1 − xb��2l + 1��− 1�l+l�ltb

l+l�+1ta

��xb + 1�l + 1���2l + 1��2l� + 1��l − m� ! �l + m� ! �l� + m� ! �l� − m�!

�
�ta

2�m�l + m� ! �l� + m� ! m

�xa + 1��2m� ! �m + �xa + 1�−1�

� 4F3	m + 1,l + m + 1,l� + m + 1,m +
1

xa + 1
;2m + 1,m +

xa + 2

xa + 1
,m;ta

2
 ,

where 4F3 is a hypergeometric function �23�. Make the definition

�ll� =
�1 − xa��1 − xb��2l + 1��− 1�l+l�ltb

l+l�+1ta

��xb + 1�l + 1���2l + 1��2l� + 1��l − m� ! �l + m� ! �l� + m� ! �l� − m�!
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and then consider the following function of a complex variable s:

Fl�s� = �
l�=�m�

�
�ta

2�l�l��l + l�� ! �l� + l�!
��xa + 1�l� + 1��l� − m� ! �l� + m�!	 1

1 − s

l+l�+1

, �16�

which is analytic everywhere except at s=1 where there is a
pole of order l+ l�+1�3. A diagonal element is obtained by
evaluating Fl at s=0: �llFl�0�= �BA�ll. The derivative of Fl

evaluated at s=0 results in the neighboring off-diagonal ele-
ment �ll+1Fl��0�= �BA�ll+1. In general, the nth derivative of Fl

evaluated at s=0 gives an element in the lth row of BA:
�ll+nFl

�n��0�= �BA�ll+n. Evidently, Fl is a generating function
for a sequence of elements in the lth row of BA. If a non-
trivial solution is to exist, then we must have �ll+nFl

�n��0�
=n,0. Assuming that this is so leads to a contradiction. By
the assumption, �llFl�0�=1—i.e., Fl�0��0—and all the de-
rivatives of Fl vanish at s=0. But Fl is analytic in the vicinity
of s=0, and so its power series clearly indicates that Fl is a
positive constant �—namely, Fl�s�=��0—in the vicinity of
s=0, and therefore by analytic continuation Fl�s�=� every-
where except s=1. But as s→−�, Fl�s�→0, which is a con-
tradiction. Therefore, as expected, Eq. �15� has only the
trivial solution, and Qlm

a =Qlm
b =0 for m�0.

A physical interpretation can be given for the s-dependent
factor in Eq. �16�. For l= l�, this factor essentially rescales ta

and tb: ta→ ta /�1−s and tb→ tb /�1−s. If the identity matrix
is to be obtained, we expect �llFl to be invariant under this
rescaling. However, as s→−�, the two spheres become in-
finitely separated and the point charge result is regained. In
particular, the surface charges vanish. By the expected in-
variance, we then obtain an unphysical result: the surface
charges vanish for all separations. This reasoning does not
hold for m=0 since those components do not obey the ho-
mogeneous equation under consideration here.

Only Ql0
a and Ql0

b remain to be determined. The following
definitions will be more natural for the azimuthally symmet-
ric special case now being delt with because they render the
expansion for the surface charge densities purely in terms of
Legendre polynomials:

Ql
a = �2l + 1Ql0

a ,

Ql
b = �2l + 1Ql0

b .

From Eq. �15�, we find the equations for Ql
a and Ql

b:

Ql
b =

qa�1 − xb�l�2l + 1��− 1�ltb
l+1

�0��xb + 1�l + 1�xa

+
�1 − xb�l�2l + 1��− 1�ltb

l+1

��xb + 1�l + 1�l! �
l�=0

� �l + l�� ! ta
l�Ql�

a

l� ! �2l� + 1�
,

Ql
a =

qb�1 − xa�l�2l + 1�ta
l+1

�0��xa + 1�l + 1�xb

+
�1 − xa�l�2l + 1�ta

l+1

��xa + 1�l + 1�l! �
l�=0

� �l + l�� ! tb
l�Ql�

b �− 1�l�

l� ! �2l� + 1�
.

�17�

A bit more notation will simplify the appearance of these
equations. Make the following definitions:

Ql
b =

�− 1�lQl
btb

l

2l + 1
,

Ql
a =

Ql
ata

l

2l + 1
,

�l
b =

�1 − xb�ltb
2l+1

�xb + 1�l + 1
,

�l
a =

�1 − xa�lta
2l+1

�xa + 1�l + 1
,

�l,l� =
�l + l��!
l ! l�!

= �l�,l,

�l,l�
a = �l

a�l,l�,

�l,l�
b = �l

b�l,l�.

Once the first term on the left-hand side of each member of
Eq. �17� is combined with the l�=0 term from the corre-
sponding sum, Eq. �17� can be cast conveniently in matrix
form
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�18�

Because TQ=X, Q is given by

Q = T−1X . �19�

B. Electrostatic energy

The electrostatic energy for this special case of two iso-
lated spheres follows from Eq. �13� and the additional nota-
tion that has been defined:

U =
qaqb

�0L
+

qa
2

2a
	 1

�0
−

1

�a

 +

qb
2

2b
	 1

�0
−

1

�b



+
1

2L
�
l�0

�qbQl
a + qaQl

b� . �20�

For l=0 and l=1, one can easily use either Eq. �17� or
�19� to find Ql

a and Ql
b for use in Eq. �20� for the energy. For

l=0 the energy is simply

U =
qaqb

�0L
+

qa
2

2a
	 1

�0
−

1

�a

 +

qb
2

2b
	 1

�0
−

1

�b

 ,

the interaction energy plus the two so-called self-energies.
For the purpose of calculating the force, only the term that
depends on L is important. Evidently, in the lowest order, the
force is the same as the force for two points charges in a
medium of dielectric constant �0.

For l=1, we let Ql�1
a,b =0:

Q1
a =

�1 − xa�ta
3

2 + xa
�qb

�b
+ Q0

b + 2Q1
b� ,

Q1
b =

�1 − xb�tb
3

2 + xb
�qa

�a
+ Q0

a + 2Q1
a� ,

whence

Q1
a =

�0
−1�1

a�qb + qa�1
b�11�

1 − �11
2 �1

a�1
b ,

Q1
b =

�0
−1�1

b�qa + qb�1
a�11�

1 − �11
2 �1

a�1
b .

Therefore, for l=1 the energy is

U =
qaqb

�0L
+

qa
2

2a
	 1

�0
−

1

�a

 +

qb
2

2b
	 1

�0
−

1

�b



+
1

2L
�qbQ1

a + qaQ1
b� , �21�

with Q1
a and Q1

b given by the preceding two equations.

C. Effect of the dielectric constant of the spheres

According to Eq. �20�, the energy of two dielectric
spheres, each with a charge at the center, embedded within in
infinite external dielectric medium depends in a complicated
manner on the dielectric constants of the spheres. However,
precise values for the dielectric constants of the objects that
the spheres are to represent might not be readily available. In
order to assess the impact of the dependence of the interac-
tion on the magnitude of the dielectric response of the
spheres, the energy and force of the interaction have been
calculated for two identical spheres of unit radius and with
unit positive charges embedded in an infinite medium of di-
electric constant 80 �approximately that of water�. The cal-
culations were repeated for two values of the dielectric con-
stant within the spheres: 4 �similar to one estimate of the
dielectric constant of protein �2�� and 1 �vacuum�. The dif-
ference in energy for these two internal dielectric constants
�see Fig. 3�a�� is almost entirely due to the Born-like solva-
tion terms in the energy. These terms do not depend on the
separation of the two spheres. Consequently, as shown in
Fig. 3�b�, the force does not depend strongly on the choice of
dielectric constant for the spheres.

D. Comparison with the gernalized Born approximation

Because variations of the GB model are commonly used
in MD simulations of molecules in water, we wish to com-
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pare our result to the GB model. Since many variations of
the GB model exist, we will compare to what is probably the
simplest and earliest version �11�. Subsequent variations of
the GB model generally take this version as a starting point
for further developments in a variety of directions. In par-
ticular, for multiple spheres the GB electrostatic energy
would be

UGB = −
1

2
	1 −

1

�0

�

i,j

qiqj

fGB
+

1

2�
i�j

qiqj

�0rij
, �22�

where the qi �i=1, . . . ,N� are the charges associated with the
spheres, �0 is the dielectic constant of the solvent, and Lij are
the separations of the spheres. The usual form for fGB is

fGB
2 = Lij

2 + �i� jexp�− Lij
2 /4�i� j� ,

where the �i are the Born radii. In the version of the GB
model that we compare with, the Born radii are computed
according to the formula

1

�i
=

1

4�


solvent

1

r4dV ,

where r is distance from the center of the ith sphere and
integration takes place over the whole solvent region. The

Born radii depend on the configuration of the spheres
through the limits of integration, and therefore, when taking
a derivative in order to obtain the forces, the Born radii must
be regarded as functions of the positions of the spheres. Al-
though this fact is sometimes neglected in the interests of
computation efficiency �11�, we do not neglect it in order to
produce a fair comparison. Often the GB energy is given as
solvation energy without the final term in Eq. �22�, but since
we have computed the total energy, it is necessary to include
not just the solvation energy but the Coulomb energy in the
comparison as well.

The comparison is made for the situation of two spheres
of unit radius and unit internal dielectric constant in an infi-
nite solvent with �0=80 �water�. Both opposite and like
charge cases were evaluated using unit magnitude charges in
both cases. Because the special case of two spheres was con-
sidered, Eqs. �19� and �20� were used to compute the energy
given by the surface charge method to order l=2, which
provides sufficient accuracy at most distances �see Fig. 4�.

Figure 5 shows a graph of the force between two spheres
with unit internal dielectric constant, unit radii, and an exter-
nal dielectric medium with �0=80. The case of equal unit

FIG. 3. Energy and force calculations for two identical spheres
of unit radius with unit charges embedded in an infinite medium
��0=80�. �a� The dashed line is the energy for spheres with internal
dielectric constant 4 minus the energy for spheres with internal
dielectric constant 1 divided by the magnitude of the energy for
spheres with internal dielectric constant 1. The solid line is calcu-
lated in the same manner as the dashed line except that in the
numerator only the L-independent self-energy terms are kept. The
solid line therefore represents the portion of the change due to the
solvation self-energy terms, which do not affect the force. �b� The
force for spheres with internal dielectric constant 4 minus the force
for spheres with internal dielectric constant 1 divided by the mag-
nitude of the force for spheres with internal dielectric constant 1.

FIG. 4. The force between two spheres of unit radius, with unit
interior dielectric constant, in an external dielectric with �0=80. �a�
The force for like charges of unit magnitude. The change between
l=7 and l=8 at L=2 is 0.96%. The convergence is even better for
larger L. �b� The force for opposite charges of unit magnitude. Ex-
cellent convergence leads to a change between l=3 and l=4 of
0.018% at L=2. As in the �a�, the convergence is even better for
larger L.
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charges is in Fig. 5�a�, and the case of opposite unit charges
is in Fig. 5�b�. Interestingly, the exact �to l=2� repulsion in
the case of like charges is larger than the repulsion of two
point charges in the solvent medium without any spheres,
while the exact attraction in the case of opposite charges is
smaller in magnitude than the attraction of two point charges
in the solvent medium without any spheres. In the case of
opposite charges, the replacement of high dielectric-
constant-medium around the point charges with low-
dielectric-constant material �the spheres� causes the attrac-
tion to become weaker. The same behavior occurs in the
completely analytical result, to be presented in a separate
publication, for symmetrically placed point charges in low-
dielectric-constant material with a slab of high-dielectric-
constant material in between. Possible implications of this
asymmetric screening will be mentioned in the following
section. The odd behavior of the GB approximation in the
case of opposite charges is apparently a result of the depen-
dence of the Born radii on the separation of the spheres.
Figure 6 shows the percent difference of the exact �to l=2�
and GB results from the force of two point charges in the
solvent medium without any spheres. Some of the more
elaborate variations of the GB approximation might do better
than the simple one presented here, which evidently is un-
likely to produce reliable results in MD simulations. Simply
using the result for point charges in a solvent produces closer

agreement with our exact result. However, the differences at
short distances might cause potentially important differences
in the local conformations.

VIII. DISCUSSION

The model presented here allows arbitrary accuracy in
computing the electrostatic energy and forces in a system of
charged dielectric spheres. Furthermore, the implementation
of the model should be numerically efficient, since the main
computational step in the computation of the energy is the
inversion of a matrix of size on the order of the number of
spheres. Unlike GB methods, the solute �i.e., the various
spheres� need not have the same dielectric response in order
for the formalism to be valid. In the special case of two
isolated spheres in an infinite solvent, the exact result pre-
sented here includes an interesting asymmetric screening: in
the case of like-charged spheres, the magnitude of the �repul-
sive� force is larger than for point charges in the same sol-
vent, while for spheres with opposite charges, the magnitude
of the �attractive� force is smaller than for point charges in
the same solvent. Because this asymmetric screening appears
to be a generic phenomenon not restricted to the specific
geometry presented here, the asymmetric screening penalizes
unfavorable contacts in a conformation of a molecule and
diminishes the depth of the attractive well that other parts of
the molecule might encounter when a unfavorable contact

FIG. 5. Comparison of forces for unit interior dielectric con-
stant, unit radii, and external dielectric �0=80. �a� The force for like
charges: the dashed line is the surface charge �exact� method �l
=2�, the heavy solid line is the GB model, and the light solid line is
the result for point charges in the solvent without any spheres. �b�
The force for opposite charges: the dashed line is the surface charge
�exact� method �l=2�, the heavy solid line is the GB model, and the
light solid line is the result for point charges in the solvent without
any spheres.

FIG. 6. Percent deviation of the force from the force of point
charges in the solvent without any spheres �Fpc�. �a� The force
deviation for like charges: the dashed line is for the surface charge
method �l=2�, and the heavy solid line is for the GB model. �b� The
force deviation for opposite charges: the dashed line is for the sur-
face charge method �l=2�, and the heavy solid line is for the GB
model.
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occurs elsewhere, thereby reducing the effect of energetic
traps. We conjecture that this asymmetric screening might
therefore play a role in enhancing recognition of motifs in
intermolecular interactions and aid in selection of the bio-
logically functional conformation within molecules.

As alluded to earlier, the model solved here also provides
electrostatic interactions in an electrorheological fluid. Be-
cause such a system offers the quickest and cleanest route to
apply the model, we intend to test the model in that context
first and present the details in a later publication. The restric-
tion to a system of spheres is not a problem for a colloidal
system, but can be a problem in the MD context. However,
no difficulty exists in applying the surface charge method in
a boundary element formulation which should scale well. In
particular, given an arbitrary shape for a molecule, the sur-
face can be divided into small patches, each with a certain
surface charge. The boundary condition is applicable at each
patch and will yield algebraic equations for the values of the
surface charge of each patch. The presence of ions should
also be accounted for and will be addressed in a future pub-
lication.
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APPENDIX: CHANGE OF COORDINATES
FOR FUNCTIONS ON A SPHERE

It is now necessary to find the relationship between �lm
i

and �̃lm
i . We may temporarily drop the superscript i without

causing confusion. We also switch briefly to Dirac notation
to simplify the calculation. Namely, the ket ��� represents the
function �, the ket �� ,�� represents the direction given by �
and �, the value of the function evaluated at the point � ,� is
represented by the number �� ,� ���, and so forth. The ket
�l ,m� is a spherical harmonic function, and �� ,� � l ,m�
=Ylm�� ,��. Suppose that n̂ is a unit vector specified by � and
�. A rotation R of the vector n̂ in three-dimensional space

yields another vector n̂̃=Rn̂ specified by �̃ and �̃. The cor-
responding rotation of a ket is represented by D�R�: namely,

��̃ , �̃�=D�R� �� ,��. We note that D†�R�=D−1�R�=D�R−1�.
Using the completeness of the spherical harmonics, which

implies that the identity operator I may be written as I
=�lm � l ,m��l ,m�, one finds ���=�lm � l ,m��l ,m ���, and there-
fore ��� ,��=�lmYlm�� ,���lm, which is the first equality of
Eq. �3�. However, the identity operator may also be written
as

I = �
lm

D†�R��l,m��l,m�D�R� ,

from which one finds

���,�� = ��,���� = �
lm

��,��D†�R��l,m��l,m�D�R����

= �
lm

Ylm��̃,�̃��̃lm,

where �̃ and �̃ are the rotated coordinates. Therefore, �̃lm
becomes

�̃lm = �l,m�D�R���� = �
l�m�

�l,m�D�R��l�,m���l�m�,

which is the desired relation between �lm and �̃lm provided
the matrix elements �l ,m �D�R� � l� ,m��. These matrix ele-
ments are known �24� and vanish unless l= l�. The most gen-
eral rotation can be parametrized as R�� ,� ,��
=Rz���Ry���Rz��� where the rotations on the right-hand side
are rotations about the individual axes �indicated in the sub-
scripts� in the global coordinate system. Clearly,
R−1�� ,� ,��=Rz�−��Ry�−��Rz�−��. The remaining matrix
elements are

Dm,m�
�l� �R� = �l,m�D�R��l,m�� = e−im�−im�� �

k=0

l+m�

�− 1�k−m�+m

�
��l + m�� ! �l − m�� ! �l + m� ! �l − m�!

k ! �l + m� − k� ! �l − k − m� ! �k − m� + m�!

� 	sin
�

2

2k−m�+m	cos

�

2

2l−2k+m�−m

. �A1�

The sum runs over values of k for which the factorials are
defined.

In order to apply Eq. �A1� to the situation at hand, the
appropriate rotation R must be specified by choosing �, �,
and �. In the development above, application of R to the
functions takes them from the global system to the local
system. Therefore, R takes the local z axis to the global z
axis. Equivalently, R−1 takes the global z axis to the local z
axis. Inspection of Fig. 1 implies the assignments �=0, −�
=�−�, and −�=�−�. Since � vanishes, the rotation is pa-
rametrized by just two angles. This fact may be understood
by noticing that the orientation of the new x and y axes is
irrelevant, and therefore no rotation is necessary to bring
them into a preferred position. The matrix elements D

m,m�
�l� for

two special cases were used in Sec. VII: �=0, �=0, �=0
and �=0, �=�, �=0. In the first case, the factor
�sin�� /2��2k−m�+m will vanish unless its exponent vanishes.
This condition picks out a single value in the sum over
k—namely, k= �m�−m� /2. The requirement that all the
arguments in the factorial expressions be non-negative im-
plies that m=m�. Consequently, D

m,m�
�l� ��=0,�=0�=mm�.

Similarly, D
m,m�
�l� ��=0,�=��= �−1�l+2mm,−m�.
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